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SUMMARY

Characteristics of the developing recirculation region behind a tapered trapezoidal cylinder and its
interaction with the separating shear layer from the leading edges were studied numerically for an
impulsively started laminar flow. An unsteady stream function–vorticity formulation was used. The
Reynolds numbers considered range from 25 to 1000. Pressure contours, surface pressure coefficient,
wake length and drag coefficient were studied through the streamline flow field. Main flow and subflow
regimes were identified by an analysis of the evolution of the flow characteristics. It was found that
typically, for a given trapezoidal cylinder, flow starts with no separation. As time advances, the
symmetrical standing zone of recirculation develops aft of the trapezoidal cylinder. The rate of growth in
width, length and structure of the aft end eddies depends on the Reynolds number. In time, separated
flow from the leading edges of the trapezoidal cylinder also develops and forms growing separation
bubbles on the upper and lower inclined surfaces of the trapezoidal cylinder. As time advances, the
separation bubbles on the upper and lower inclined surfaces of the cylinder grow towards the down-
stream regions and eventually merge with the swelling symmetrical eddies aft of the cylinder. This
merging of the flows creates a complex flow regime with a disturbed tertiary flow zone near the merging
junction. Eventually, depending on the Reynolds number and the tapered angle of the trapezoidal
cylinder, the flow develops into a specific category of symmetrical standing recirculatory flow with its own
distinct characteristics. Comparisons with the available results of other investigators showed very good
agreement. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Studies of flow over cylinders are of great importance in many engineering applications, such
as the design of tower structures, suspension bridges, chimneys, heat exchangers, road vehicles,
tall buildings, flow meters etc. Most of the present work on flow over cylinders focused on long
term flow development. Few considered using numerical methods in their studies on the early
stages of impulsively started flow. The complexity of the early stages of impulsively started
fluid flow meant that the accurate numerical computation of the flow field was very demand-
ing. However, the evolution of the flow separation around cylinders at the early stages is very
different from the long term wake development. Hence, the study of the flow development
characteristics during the early stages of an impulsively started flow are necessary for a better
understanding of the build-up of the recirculation zone before the flow burst into smaller
Karman type of vortices.
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Separated flow over bluff bodies such as circular cylinders, square cylinders, rectangular
cylinders and flat plates has been studied by many researchers. However, few considered the
trapezoidal cylinders. Davis and Moore [1] studied vortex shedding from two-dimensional
time-dependent flow past rectangular cylinders. They noted that the build-up of fluid in the
recirculation zones behind the body, prior to the initiation of shedding, caused large initial
vortices, followed by some smaller and regularly shaped vortices which appeared when steady
state shedding was reached. Nagano [2] investigated similar flow over a rectangular cylinder
using the discrete vortex model instead of solving the Navier–Stokes equations with the finite
difference or finite element method. Fernando and Modi [3] used a more sophisticated
numerical approach—the boundary element method in conjunction with the discrete vortex
model to represent the complex unsteady flow field around a bluff body with separating shear
layers. Ling et al. [4] used a finite element method to investigate the Strouhal frequencies in
vortex shedding over square cylinders with surface suction and blowing. Kim and Benson [5]
made a comparison of various numerical methods: the SMAC, PISO and iterative time
advancing schemes for unsteady flows past a circular and a square cylinder. The ability of each
scheme to solve the unsteady flows was attributed to a pressure correction algorithm which
strongly enforced the conservation of mass. For experimental work, many researchers studied
the low Reynolds number flow around circular, rectangular and square cylinders. Bearman and
Trueman [6] carried out a flow visualisation study of flow over rectangular cylinders. They
showed that the drag coefficient was found to be strongly influenced by the presence of the
trailing corners. Coutanceau and Bouard [7] and Bouard and Coutanceau [8] used flow
visualisation as their main tool for studying the wakes behind an impulsively started flow past
circular cylinders. They were interested in the near wake evaluation. They found that the
characteristics of the pair of symmetric standing eddies and the appearance of secondary
phenomena near the wake region depend on the initial Reynolds number. The characteristics
of the early wake development can have a strong influence on the evaluation of the effects of
secondary phenomena. Gerrard [9,10] carried out a series of experiments, including very
careful flow visualisation studies on a circular cylinder in water using a towing tank. At a
certain Reynolds number, the length of the recirculation region containing a pair of contra-ro-
tating standing eddies was found to be approximately two cylinder diameters long. At higher
Reynolds numbers, Gerrard observed dye which had rolled up into a votes returning towards
the cylinder, in what he referred to as a ‘finger’. Gerrard [10] also observed the three-dimen-
sional nature of the wake flow, where the passage of time from the start of the motion showed
the influence of the ends spread across the span, giving rise to bowed vortices. Okajima [11]
and Okajima and Kitajima [12] investigated the fluid behaviour around square and rectangular
cylinders in a wind tunnel and in a water tank. For the cylinders with width to height ratios
of two and three, there existed a certain range of Reynolds numbers where the abrupt change
of flow pattern occurred with a sudden discontinuity in the Strouhal number curves. For the
Reynolds number below that region, the flow separated at the leading edges and reattached on
either the upper or the lower surface during a period of vortex shedding. For Reynolds number
above that region, the flow tended to reattach on the cylinder due to the increasing effects of
the Reynolds stressed and turbulent entertainment at high Reynolds number. More recently,
Kyoji and Yoshifumi [13] visualised water flow over a circular cylinder and a trapezoidal
cylinder in a circular pipe, in order to investigate the complexity of the flow in a flow meter.
From their experiment, it was shown that the formation of Karman vortex-like vortices is
three-dimensional when they form behind a circular cylinder or a trapezoidal cylinder, as the
separated shear layer wrapped up the fluid behind the cylinder. Also, the leading edge of the
separation region was observed to move up to a certain distance behind the circular cylinder
with the increasing Reynolds number.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1181–1203 (1998)
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2. GOVERNING EQUATIONS AND NUMERICAL PROCEDURES

Figure 1 shows the geometrical configurations of flow over a tapered trapezoidal cylinder. For
the present study, the two-dimensional governing equations describing the flow over a
trapezoidal cylinder are expressed as generalised streamfunction vorticity equations of the form

(w(
(t

−9× (ū×w( )= 1
Re

(92w( )+S, (1)

w( = −92c( , (2)

ū=9×c( , (3)

where w( , c( , ū represent the vorticity, stream function and velocity respectively, and S
represents the source term. The inflow Reynolds number is defined as Re=ru0b/m.

For the solution domain considered, a uniform velocity is assumed at the inlet boundary.
The normal derivative of the velocity is assumed to be zero at the outlet boundary. Along the
other two horizontal boundaries, the flows are assumed to be sufficiently far from the influence
of the square cylinder. Hence, the horizontal velocity component is assumed to be the
undisturbed uniform velocity value and the normal velocity component is assumed to be zero.
Non-slip conditions are applied at the surfaces of the square cylinder. The stream function and
vorticity boundary conditions follow the relationships given by Equation (3) with respect to
the specified velocity boundary conditions. The streamline at the axis of symmetry is assigned
a reference value of zero.

The present work is concerned only with the initial stages of the impulsively started flow
over the tapered trapezoidal cylinder. Thus, the numerical solution is an initial value problem.
Besides the boundary conditions specified, the initial velocities, vorticity, pressure and stream-
function fields must be known at the initial time. At time t=0, the velocity field is assigned
values at the inlet section (hence, the term ‘impulsively started flow’). The initial pressure field
is set to a reference value of zero.

In the present study, the flow governing Equations (1)–(3) is expressed in generalised
curvilinear co-ordinate system. This allows the implementation of a numerical scheme on the

Figure 1. Problem definition of flow past a trapezoidal cylinder.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1181–1203 (1998)
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Cartesian grid, where the geometric characters are embedded in the coefficients of the
transformed equations. The equations for any two-dimensional cross-sections are then ob-
tained by specifying suitable coefficients for the transformed governing equations. All the
transported properties are expressed in their conservative form.

For the two-dimensional problem considered here, the curvilinear velocity U, V and the
Cartesian velocity components u, 6 are related by

U=ujx+6jy, V=uhx+6hy. (4)

The Jacobian matrix J and the matrix terms jx, jy, hx, hy are obtained from

jx=
yh

J
, jy= −

xh

J
, hx= −

yj

J
, hy=

xj

J
. (5)

The algorithm of the numerical solution is followed closely by the alternating direction implicit
(ADI) method proposed by Samarskii and Andree [14]. The advancement over one time step
is accomplished by:

(I−DtAo)(w( )*= (Ao+Ah)(w( )n+ (SD)n

(I−DtAo)(w( )**= (w( )* (6)

(w( )n+1= (w( )+Dt(w( )**

The streamline field is then obtained from the vorticity field through Equation (2) by a
successive over relaxation (SOR) iteration procedure [15]. The velocity fields are obtained from
Equation (3) and the pressure field is obtained directly from the streamline field:

92P=2
�(2c

(x2

(2c

(y2 −
� (2c

(x (y
�2n

(7)

A hybrid difference scheme [16] implemented for the convection related terms is outlined as
follows:

(f

(r
=

fi+1−fi−1

2Dr
v+

fi−fi−1

Dr
(1−v)A+

fi+1−fi

Dr
(1−v)B, (8)

where f denotes the convection related transport parameters, r is j or h and i is the index of
grid point. The parameters v, A and B are determined by the local cell Reynolds number (Re l)
as follows:

if �Re l�B2.0, then v=1.0, A=0.0, B=0.0, (9a)

if �Re l�52.0, then v=1.0, A=1.0, B=0.0, (9b)

if �Re l�]2.0, then v=0.0, A=0.0, B=1.0, (9c)

where Re l=uj · Dj ·Re or uh ·Dh ·Re for the convective terms in the j- or h-direction,
respectively.

Second-order upwind schemes are used for the convection terms in the governing equation
and the three-point central difference schemes are used for the diffusive terms. At the grid
points adjacent to the boundary, central difference schemes are used for each variable. The
details are described as follows.

The convection terms are discretised as:

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1181–1203 (1998)
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and for points adjacent to the boundary,
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The present work is concerned only with the initial stages of the impulsively started flow over
a tapered trapezoidal cylinder. Therefore, the numerical solution of the impulsively started
flow over a tapered trapezoidal cylinder is an initial boundary value problem. Apart from the
boundary conditions specified earlier, the velocities and pressure must be known at the initial
time, in order to carry out the numerical computation of the unsteady flow. The solution
sequence for each flow condition is thus given by

1. At time t=0, the velocity in the whole of the solution domain is given values at the inlet
section (hence the term impulsively started flow). The initial streamline field and the vorticity
fields are then calculated. The initial pressure field is set to a reference value of zero.

2. For t\0, the vorticity equation is solved by the ADI and block TDMA [17] codes.
3. The streamline field is then obtained from Equation (2) through the SOR method.
4. The velocity and pressure fields are updated with the new streamline field obtained.
5. The information for pressure coefficients, drag coefficient, etc., are obtained from the pressure

field. The wake length is estimated from the above solutions.

In the above computational procedures, the velocities at the corners of the square cylinder
are undefined. Therefore, the conditions in these areas are treated separately. Here the
multidomain iterative procedure is introduced, with the whole computational domain being
divided into four subdomains and the sharp corners located at the boundary of each subdomain.
This method simplifies the definition of boundary conditions at the sharp corners, because they
are treated as a solid boundary of a subdomain when numerical iterations of the entire solution
domain are obtained.

The boundary conditions are shown in Figure 1 and the finite difference mesh used in the
present study are shown in Figure 2. The location of the cylinder in the computational domain
as shown in Figure 1 is determined through a series of preliminary numerical test runs. For
b=1/2a, the optimum parameters determined are: c=d=7a, e=4.5a, g=14.5a and f=a,
where a is the length of the frontal side of the trapezoid, and b is the length of the rear side.
The distance from the symmetrical axis of the cylinder to the lower and upper sides of the
computational domain is chosen to be sufficiently large, so that it satisfies the requirement that
the solution domain is almost infinite. The finite difference mesh used is shown in Figure 2. Grid
independent tests have been carried out for an impulsively started flow over a trapezoidal cylinder
at Re=100 on grid points of 81×61, 161×121 and 181×161. From the results obtained for

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1181–1203 (1998)
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Figure 2. Finite difference mesh.

the wake length (Figure 3), the difference between these three grid sizes is negligible. Thus, the
total number of grids used in the present calculation is 161×121. A numerical grid generation
procedure was also introduced to provide more grid points near the solid boundary, to obtain
a better insight of the fluid phenomena within the wake regions.

For the present analysis of the impulsively started flow over the tapered trapezoidal
cylinders, numerical results are presented for time variations of streamline patterns, pressure
contours, surface pressure coefficients, drag coefficients and closed wake length.

3. RESULTS AND DISCUSSIONS

The numerical results obtained for flow past a tapered trapezoidal cylinder at Re=25, 50, 250,
500 and 1000 are presented for study of the early stages of symmetrical wake flow develop-

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1181–1203 (1998)
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ments. Computations of the symmetrical flow past the tapered trapezoidal cylinder were
obtained up to a dimensionless time of t=8.

Figures 4–9 show the evolution with time of the impulsively started streamline flow structure
over the tapered trapezoidal cylinder for Re=25, 50, 150, 250, 500 and 1000, respectively.
Immediately after it starts, the flow is typically irrotational everywhere (Type I main-flow). But
as the flow moves over the tapered trapezoidal cylinder, vorticity is generated at the solid surface
and transported to the region of the rear stagnation point, inducing a reverse flow. This reverse
flow grows in time into a symmetrical standing zone of recirculation at the aft end of the cylinder
(Type II main-flow). Flow separation from the leading edges of the tapered trapezoidal cylinder
also develops as Re increases or when time advances (Type III main-flow). Above a critical
Reynolds number Recrit, and after a critical period of time (t*) which is shorter for greater
Reynolds numbers, the separated flows from the leading edges of the tapered trapezoidal
cylinder merge with the swelling recirculation wake flow region at the aft end of the cylinder.
This creates a complex recirculatory flow pattern (Type IV main-flow) with possible tertiary
recirculations at the meeting points of the Type II and Type III separated flows. However, the
present investigation is limited to cases where the recirculation zones in which eddies develop
remain symmetrical and stably attached to the tapered trapezoidal cylinder.

A simple qualitative examination of the contours of the developing streamlines shows that
the time development of the flow differs when Re is increasing. It is possible to distinguish three
categories of flow time evolution which correspond roughly to small, moderate and high
Reynolds numbers, while the flow remains symmetrical and attached to the tapered trapezoidal
cylinder:

ReBRe1, Re1BReBRe2 and Re\Re2.

The exact limiting values of Re1 and Re2 cannot be determined by this qualitative investigation;
they will be classified subsequently by means of the numerical presentations of the streamline
contours on the main characteristics of the flow. However, for the sake of illustration, it can
be said that the values of Re1 and Re2 have been found to be approximately 25 and 150.

Figure 3. Test on the effect of grid point number (comparison of wake lengths).

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1181–1203 (1998)
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Figure 4. Instantaneous streamline pattern for Re=25 at various times.

3.1. Time e6olution at low Reynolds numbers: ReBRe1

If the value of Re remain below a certain limiting value of Re1 and the flow time is small
(tB1.0), the flow develops with time without visible flow separation and reattachment (Type
I main-flow). After a short lapse of time, the flow separates first from the rear surface of the
tapered trapezoidal cylinder (Type II main-flow) and forms aft end symmetrical eddies within
a recirculating zone (subflow (a)). This unique recirculating zone typically consists of the two
symmetrical eddies. For Re:25 the twin eddies occur as soon as t\1.5. The length and the
width of the recirculation region increase as flow time advances. However, the width of the
recirculation region remains smaller than the width of the aft end of the tapered trapezoidal
cylinder.

3.2. Time e6olution at moderate Reynolds numbers Re1BReBRe2

As the Reynolds number is further increased, the domains of the recirculating zone increase
rapidly. Recirculatory flow phenomena begin to appear during the flow development, which is
typical for this category of flow. First, the fluid particles passing through the region near the
sharp corners at the rear surface of the tapered trapezoidal cylinder deviate from the cylinder,
causing a separation region in the streamline pattern. The recirculation region of the close
wake is established. As flow time progresses, streamlines separating from the leading edges of
the upper and lower inclined surfaces of the tapered trapezoidal cylinder (Type III main-flow)
merge with the growing recirculation region at the aft end of the cylinder. This results in a
complex recirculatory flow pattern (Type IV main-flow) with tertiary recirculations (subflow

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1181–1203 (1998)
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(c)) near the meeting points between the Type II and Type III flows. The complexity of the
flow pattern depends on the Reynolds number. The width of the recirculation region is now
slightly larger than the width of the aft end of the tapered trapezoidal cylinder.

For Re=50, Figure 5 shows that at tB1.0, there is no observable flow separation over the
leading edges of the tapered trapezoidal cylinder. For t\1.0, flow separations begin at the
trailing edges of the tapered trapezoidal cylinder. The twin eddies can be seen issuing from the
rear stagnation point of the cylinder. For t\3.0, the separated flow region grows in size and
development of the symmetrical eddies can be seen through the corresponding streamline
pattern behind the tapered trapezoidal cylinder.

3.3. Time e6olution at high Reynolds numbers, Re\Re2

Beyond the limiting value of Re2, two different sorts of phenomena occur which complicate
the time development of the flow. As seen from Figures 6–9, after a certain lapse of time
following the impulsively started flow over the tapered trapezoidal cylinder, the upper and
lower surface shear layers begin to merge with the main recirculating zone at the aft end of the
square cylinder, thus creating disturbances (subflow (c)) at the point of merging.

For Re=150 and t\1.0, the twin eddies appear nearer to the rear corners instead of at the
centre of the aft surface of the tapered trapezoidal cylinder. At t=3.0, the streamlines separate
at the leading corners of the tapered trapezoidal cylinder, forming recirculatory flow regions at
the upper and lower inclined surfaces of the cylinder. As time advances, these separated
secondary flows move towards the rear end and join up with the recirculating flow in the wake
region. A tertiary subflow region was identified.

Figure 5. Instantaneous streamline pattern for Re=50 at various times.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1181–1203 (1998)
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Figure 6. Instantaneous streamline pattern for Re=150 at various times.

For Re=250, 500 and 1000, the sizes of the twin eddies at t\5 are observed to be almost
similar at the corresponding time levels for these flows. However, the sizes of the separated
shear layer at the upper and lower inclined surfaces of the tapered trapezoidal cylinders are
larger for higher Reynolds number at the corresponding time level. Thus, for a corresponding
time level, higher Reynolds numbers will give a larger combined recirculatory flow region and
a more obvious tertiary recirculatory flow regime.

It should be pointed out here that for larger values of t, if an external disturbance is
introduced, this will lead to vortex shedding. The flow solution may then bifurcate between
symmetrical wake and Karman wake. It is also possible that the symmetrical wake at higher
Reynolds numbers bifurcates between a steady state configuration and oscillating configura-
tion or a periodic one of different nature. These are not within the present scope of study.

3.4. E6olution of the flow characteristics in the subflow regions

Figures 4–9 also show the time evolution of the shape and structure of the various type of
subflows (a) (b) and (c) for different values of the Reynolds number. The recirculation eddies
at the aft end of the cylinder (subflow (a)) rotate in the same directions as the eddies at the
upper and lower inclined surfaces of the tapered trapezoidal cylinder (subflow (b)). The flow
separation shear layers and the main recirculation zone grow in size with time and as Reynolds
number increase.

For Re=25, Figure 6 shows the typical time development of the subflow (a). It starts from
the rear cylinder surface without presenting any variation in the concavities and remains
smooth until the downstream extremities. It can be seen that in the earlier stage of the flow

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1181–1203 (1998)
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development the point of reattachment moves very quickly downstream. But from t\3.0 the
evolution becomes slow. At this value of Re, the maximum width of subflow (a) remains, at
most, equal to the width of the trailing edge of the tapered trapezoidal cylinder.

For Re=50, the outlines of the subflow (a) closely follow that for Re=25 and tB3.0. The
width of the wake remains smaller than the width of the trailing edge of the tapered
trapezoidal cylinder. But for t\3.0, the width of the wake becomes slightly larger than the
width of the trailing edge of the tapered trapezoidal cylinder.

For Re=150, 250, 500 and 1000, the width of the wake of subflow (a) clearly becomes
larger than the width of the trailing edge of the tapered trapezoidal cylinder for t\3.0. The
separated flows (subflow (b)) developing from the leading edges of the cylinder begin to merge
with the recirculation zone in the wake region. For t\6.0, however, the size of the
recirculation zone remains similar to that where Re=150, 250, 500 or 1000.

In general, the above study shows that for Reynolds number greater than a critical value and
after a certain time period, separated flows from the leading edges of the tapered trapezoidal
cylinder merge with the growing main recirculating zone aft of the cylinder. This creates a
tertiary flow regime (subflow (c)) between the two merging recirculatory flows.

3.5. E6olution of other characteristics

Having made a comprehensive study by analysing the characteristics of the main recircula-
tory flow regions, the other derived characteristics of the flow, viz. the flow field pressure
contours, the surface pressure coefficient, the wake length and the drag coefficient are
considered.

Figure 7. Instantaneous streamline pattern for Re=250 at various times.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1181–1203 (1998)
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Figure 8. Instantaneous streamline pattern for Re=500 at various times.

Figures 10–15 show the time variation at t=2.0, 4.0, 6.0 8.0 and 10.0 of the pressure
contours for Re=25, 50, 150, 250, 500 and 1000, respectively. For the range of Reynolds
numbers considered here, the development of the pressure contour lines closely follow the
development of the streamline patterns. For Re=25 and t=2.0, the pressure contour indicates
that there is little recirculation region present. As time advances, the development of the wake
region behind the rear wall of the tapered trapezoidal cylinder is recognised. From the
corresponding streamline patterns for Re=50, the small vortices can be seen to develop from
the rear wall causing the pressure contour lines to separate at t=2.0. The pressure contour
lines become closer and eventually merge at t=8.0. From the outline of the wake region at
different time levels, the twin vortices can be seen growing larger with increasing time. Figure
12 shows the pressure contours for Re=150. In comparison with the pressure contours for
Re=25 and 50, the outline of the wake region from the frontal corners to the rear stagnation
point is larger. From the previous study of the streamline patterns, secondary recirculation is
known to develop at these corresponding Reynolds numbers. However, the variations in the
pressure contours are not significant when the recirculation regions are fully developed. For

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1181–1203 (1998)
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higher Reynolds numbers (Figures 13–15), the pressure contours become more complex.
Separation flow at the frontal corners merges with the recirculation region at the aft end as
time advances. The development of the symmetrical eddies at the aft end of the cylinders can
be observed from the changes of the pressure contours in the trailing wake region. For
ReB50, the recirculation pattern behind the cylinder is small. For Re\250, the pressure
contours show a complicated pattern compared with that of the lower Reynolds numbers of
Re=25 and 50. At Re=250, the secondary recirculation region at the upper and lower
inclined surfaces of the cylinder can be seen to merge with the wake region aft of the cylinder,
forming a single tertiary recirculating flow region between the separated flow from the leading
edge and the recirculation region at the aft end of the cylinder.

Figures 16 and 17 show the distributions of surface pressure coefficients (Cp= (p−p�)/
(0.5ru�2 )) at various times for Re=50 and 500, respectively. Interesting flow features can be
observed from these surface pressure coefficients. The surface pressure coefficients at the
frontal stagnation point have the maximum positive value. The minimum Cp (negative value)
appears on the surfaces of the inclined side immediately after the frontal corners. The changes
of the surface pressure coefficients are gradual along the two inclined side walls of the cylinder.

In this study, the wake length is defined as the distance between the downstream stagnation
point on the symmetric axis and the cylinder rear surface. Figure 18 shows the time variation
of the wake length with time at various Reynolds numbers. At Re=25, the rate of the time
variation of wake length is slower than other Reynolds numbers. For Re\50, the wake length
increases almost linearly with time. The figures show that at the same time instant, the wake
length increases very little with the increasing Reynolds numbers considered here.

Figure 9. Instantaneous streamline pattern for Re=1000 at various times.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1181–1203 (1998)
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Figure 10. Time variation of the pressure contours at Re=25.

Figure 19 shows the variation of drag coefficients (Cd) with time for various Reynolds
numbers. At low Reynolds numbers, the Cd variations are different from those at high
Reynolds numbers. For Re\150, there are no obvious difference in the variation of the drag
coefficients. For Re=25, the drag coefficient drops rapidly from the maximum value. As the
time advances, Cd varies in a narrow range and the magnitude of that range becomes smaller,
until finally, after t=17.0, it approaches a value of :1.70. This is smaller than the
corresponding case for the square cylinder (Cd=2.0) under the same flow condition. The
Cd-curve for Re=50 shows similar behaviour. The value is much smaller compared with the
case of Re=25. It approaches a value around 1.61 as time advances. For Reynolds numbers

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1181–1203 (1998)
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between 150 and 1000, the Cd curves are similar and the differences between them are small.
The drag coefficients decrease rapidly from t=1.0 to 5.0 and then increase after t=5.0. They
soon decrease again at t=9.0 and eventually approach Cd=1.50 at t=18.0. The maximum
Cd values appear at the beginning of the impulsively started flow over the tapered trapezoidal
cylinder. The initial Cd values fluctuate due to the creation of secondary recirculation flow
patterns and their changes with respect to time during the initial development stages of the
impulsively started flow. At first, only the twin vortices appear at the wake region behind the
rear wall of the cylinder. The drags decrease from the initial maximum value. When the
secondary recirculation is initiated, the drag will increase during the developmental stages of

Figure 11. Time variation of the pressure contours at Re=50.
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Figure 12. Time variation of the pressure contours at Re=150.

the secondary recirculation region. A longer period of time is required for the drag coefficients
to reach steady state values because of the appearance of the secondary recirculation. In
general, the higher the Reynolds number, the smaller the Cd steady state value. At the early
stages of the impulsively started flow, the drag coefficients decrease more rapidly than after
some time intervals. The drag coefficients generally approach a stationary value at large time
levels for all the Reynolds numbers considered here.
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3.6. Comparisons with a6ailable results obtained by other in6estigators

There have been many studies on separated flow over bluff bodies such as circular cylinders,
square cylinders, rectangular cylinders and flat plates. Very few considered the trapezoidal
cylinders. However, with the limited numerical and experimental results reported in the
literature, the results obtained in the present work compared very well with the available
results. For example, the pressure contours obtained by Ling et al. [4] are very similar to the
present computed pressure contours as shown in Figures 10–15. The drag coefficients of
configuration No. 4 of Davis and Moore [1] approach a value of Cd:1.5 after a dimensionless

Figure 13. Time variation of the pressure contours at Re=250.
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Figure 14. Time variation of the pressure contours at Re=500.

time scale of t]20 for higher Reynolds number flow. This is consistent with the results
obtained in Figure 19 where Cd�1.5 for higher Reynolds numbers in the present study. Wind
tunnel tests were also carried out by Lee et al. [18] to obtain the drag coefficients of prismatic
bodies with trapezoids as the after body shapes. The surface pressure distributions obtained
around the trapezoidal cylinders are similar to those shown in Figures 16 and 17. Positive
pressure coefficients near the magnitude of 1.0 are always shown on the surfaces facing the
approaching flow. Immediately after the frontal surface shape corners, the pressure coefficients
drop to extreme negative values. Typical pressure coefficients are in the range of Cp= −2.0
to −3.0, after which they recover to some uniform negative values within the wake region.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1181–1203 (1998)



LAMINAR FLOW PAST TAPERED TRAPEZOIDAL CYLINDERS 1199

These experimental results are similar to those shown in Figures 16 and 17. The experimental
wake lengths obtained show a similar trend to those in the present study, described in Figure
18. For the trapezoidal cylinders considered here, wind tunnel tests by Lee et al. also show a
similar steady state value of Cd:1.5 for higher Reynolds numbers, as shown in Figure 19.

Figure 15. Time variation of the pressure contours at Re=1000.
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Figure 16. Time variation of the pressure coefficient at Re=50.

4. CONCLUSIONS

Early stages of an impulsively started laminar flow around a tapered trapezoidal cylinder with
25BReB1000 are studied numerically. The computed results showed that the characteristics
of the developing flow recirculation, flow separation, and regimes caused by the interaction of
flows are strongly dependent on the approaching Reynolds number. Four main flow regimes
have been identified according to whether (i) the flow is predominantly attached to all of the
cylinder surfaces (Type I); (ii) flow recirculation develops at the aft end of the cylinder surface
(Type II); (iii) flow separation from the leading edges of the cylinder is significant (Type III);
(iv) the aft end of the recirculation zone grows and merges with the separating zone of flow
from the leading edges; forming a complex tertiary flow phenomenon at the boundary of the

Figure 17. Time variation of the pressure contours at Re=500.
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Figure 18. Time variation of the wake length.

two main mixing zones (Type IV). Within the Type I–IV main flow characteristics, three
significant subflow regimes were also identified. Subflow (a) shows the growth and develop-
ment of the symmetrical eddies aft of the cylinder surface; subflow (b) identifies the spreading
characteristics of the separating shear layer from the leading edges of the cylinder and the
development along the inclined surfaces; and subflow (c) analysed the complex disturbed flow
regime near the meeting point between the developing Type II and Type III flows.

For ReB25, the initial flow develops with time, without visible flow separation (Type I).
After a short lapse of time, the flow predominantly separates from the rear surface of the

Figure 19. Time variation of the drag coefficients for various Re.
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square and forms symmetrical eddies within a recirculating zone about the rear axis of the
cylinder (Type II). For 25BReB250, a significant secondary phenomenon was quickly
observed, viz. the development of a flow separation on the upper and lower inclined surfaces
of the tapered trapezoidal cylinder (Type III). For Re\250, the merging of the separation
flow (Type III) from the upper and lower inclined surfaces of the cylinder with the recircula-
tion zone of the wake region (Type II) forming the Type IV flow was observed. For a given
Re, once Type II and Type III recirculatory flows merge, the overall recirculation flow of Type
IV usually remains fairly constant with the advancement of time.

The time evolution of the various characteristics of the subflow regions occur during
different phases of the main flow developments. Initially, the primary recirculatory region aft
of the cylinder (subflow (a)) grows with the width of the wake which is less than the width of
the aft end of the tapered trapezoidal cylinder. As time advances, subflow (a) grows wider than
the width of the square cylinder, and eventually merges with the elongated upper and lower
separated surface shear layers (subflow (b)) from the leading edges of the cylinder. When
subflows (a) and (b) merge, complex tertiary subflow (c) region develops at the merging point.
At this stage, the recirculating zone at the aft end of the cylinder grows wider than the aft
width of the cylinder. The length of the separating shear layer from the leading edges grows
longer than the length of the cylinder.

Individualization of a rapid vortex source during the very early phase of the flow evolution
was also observed. This gives rise to the main eddy, which occurs near the aft end of the
cylinder. Subsequently, a rear stagnation point was then formed away from the aft surface of
the cylinder. This downstream stagnation point moves rapidly downstream as Re increases and
is a measure of the wake length for the flow development. Comparisons with available results
obtained by other investigators showed very good agreement.
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APPENDIX A. NOMENCLATURE

a width of the frontal surface of the trapezoidal cylinder
ADI alternating direction implicit method
b width of the aft end surface of the trapezoidal cylinder

pressure coefficientCp
Cd drag coefficient
J Jacobian matrix
L characteristic length (L=b)

non-dimensional pressurep
Re Reynolds number (ru0 ·L/m)
t time

tridiagonal matrix algorithmTDMA

non-dimensional velocity in the j-directionuj

non-dimensional velocity in h-directionuh

U mean velocity at inlet section, the characteristic velocity
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Vmax maximum non-dimensional velocity
j longitudinal co-ordinate in generalized system

lateral co-ordinate in generalized systemh

n fluid molecular kinetic viscosity
c streamfunction
z vorticity
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